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By Clarence B. Cohen

SUMMARY

A method based on linearized theory is presented for calculat-
ing the theoretical suction force at the subsonic leading edges of
a family of wings at supersonic speeds. The method is used to
determine the optimum sweepback angles for the tips of trapezoidal
wings and to determine the effect of curvature of the tip contour
on the lift-drag ratio of wing regions influenced by the tip. The
effect of skin friction is included. The possible gain in lift-
drag ratio from proper tip design of trapezoidal wings Increases
as the sweepback of the wing is increased. Results indicate that
appropriately curved tip boundaries will give higher lift-drag
ratios in the region affected by the tip than the best trapezoidal
wing.

INTRODUCTION

The two-dimensional theory of thin airfoils at subsonic speeds
gives a resultant force normal to the wing surface if only pressure
Porces on the wing surface are considered, which implies a net drag.
For this theory, however, the velocity components become infinite
at the leading edge. IEvaluation of the effect of this singularity
yields a suction force that exactly cancels the drag and thus sat-
isfies the momentum requirement that the resultant force vector be
normel to the direction of flight (reference 1).

The procedure used to derive the suction force is not
restricted to two-dimensional wings and indicetes that such a
force may occur along any edge at which the normal component of
the velocity becomes infinite. In the linearized theory for thin
wings flying at supersonic speeds, such a singularity exists along
leading edges swept behind the Mach angle. It has therefore been
proposed by Brown (reference 2) that a leading-edge suction force,
which tends to counteract the wave drag, exists along subsonic
leading edges of wings flying at supersonic speeds. The magnitude,
of this force 1is calculated in reference 2 for triangular wings

e —— by a2 = - - —— e
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swept beyond the Mach engle. The reduction in drag predicted by
the concept of leading-edge suction force has been shown by
Vincenti to occur experimentally for triangular wings swept beyond
the Mach angle.

The perturbation-velocity components required to evaluate the
local leading-edge suction force may be obtained by the methods of
reference 3 for the class of wings or wing tips for which the for-
ward Mach line from the subsonic leading edge intersects a super-
sonic leading edge. An analysis of the suction force for such
wings was made at the NACA Cleveland lsboratory in 1948 to deter-
mine its effect on the lift-drag ratio obtainable with various tip
contours.

SYMBOLS
The following symbols are used in this report:
constant defining location of trailing edge of wing
coefficient of drag due to skin friction
1ift coefficient
pressure coefficient
chord of wing
drag force
suction force (in flight direction)
quantity defining Py
constant defining angle of stralght wing edge
1ift force
Mach mmber (free stream)
distance normal to leading edge

. 1
dynamic pressure, '§p02
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R distance ratio, v-:]_'i:z ) = u_‘_’uz
S integration areas
8 distance along wing edge
U free~-stream velocity
u, v obligque coordinates.
v distance (in v-direction) between subsonic and supersonic
leading edges .
x, ¥ Cartesian coordinates
L2 angle of attack, radians
B cotangent of Mach angle, AMZ-1
€ semia.p:ex angle of trisngular wing
e angle between wing edge and flight direction (positive
_counterclockwise), %
b Mach angle, sin"t 3
mass density of air
[v)] perturbation-velocity potential
Subscripts: i
1 supersonic leading edge
2 subsonic leading edge
P friction
n indicates direction normel to wing leading edge
t  tip point of wing (at greatest span)
w wave

X, ¥ indicates velocity components in =x, y directions

- s —— - - A o e ——
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DERIVATION OF EXPRESSION FOR LEADING-EDGE SUCTION FORCE

In subsonic airfoil theory, the form of the equation of the
velocity component normal to the leading edge (referemce 1) is

Pp = —= (1)

where Py = ?ﬁ is the perturbation velocity in the n direction
(fig. 1). Thus cpn epproaches infinity as n approaches zero.

Analysis of this singularity results in a suction force per umnit
length, which can be expressed in differential form as (refer-
ence 1)

dF.

where s 1is distance along the wing edge (fig. 1).

Equations (1) and (2) may be rewritten, as in referemce 2, td
include the effects of compressibility.

1

G
o, =& L (1e)
oo v /I_an
and
) & = _I_EGi_ - - (23)

.
ds
J1u?
where M, is the component of the Mach muber normal to the edge.

For subsonic two-dimensional wings, the factor G is such
that the force defined by equation (2a) is just sufficient to
cancel the drag resulting from the flat-plate analysis. For
supersonic wings, the factor G must be determined from the
eppropriate velue of t:p;1 at the subsonic leading edge. From

reference 3, the perturbation-velocity components in the x and y
directions near the leading edge can be written (appendix A) as

ey e ¢ St e o A S ————— — =
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The coordinate system used herein is shown in figure 1. The
relations between the oblique and Cartesian coordinstes are given
by

u = 51\% (=-By) v -21-% (z+By)

(4)

(v-u)

!s"ll-'

x =% (v+u) Y=

Equations (3) may be combined to obtain the normal velocity
component near the edge ) -

2 2
0 = & n[(-%’?) +32<1+‘2’f)] (5)

n—>0

where
v (u) g
Ul uelp

The geometrical relation between R and n as n->0 is
shovn in figure 2, where

R =

n = 7Q sin (64) = § sin (64) (8)

The following ‘expressions are derived from the relations
between the oblique and Cartesian coordinates:




sin 0 =
2 2
(--ddif-) +Bz 1+d:$)
i
cos 6 = B(l+dV)
2 2
(-%sz—) +Bz 1"""1&‘:7_2)
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(7)

‘ 2 2
dup 2 dup

With the aid of equations (6) and (7), equations (la) and (5)

may be solved for Gz.

duy
_(eay r \
¢ (8 22M B) \/(1 ) %172): . 62@ +%)2 ®

This value of G° substituted into equation (2a) ylelds the

normal force per unit length along the wing edge.

an = 4pUZG2v' d"‘z

ds M av

With the use of the relation

(9)

T00T
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there results
g=ﬂzﬁ(_;’z.) N (20)
ﬂMZ v dv.
. The leading-edge suction force can now be expressed in inte-
gral form as
400202 duy dug
“j‘,z—f"(-‘a;) Fad (1)
The quantity ( - %—) %uz;_ in equation (11) is given in

figure 3 as a function of @ <for three values of Pp. With the
ald of curves such as these and a drawing of the wing in question,
equation (11) may be evaluated by a numerical summation.

The force defined by equation (11) is obtained when the radius
of curvature of the leading edge is vanishingly smsll and when the
velocity components normal to the edge become infinite at the edge.
In practice, however, the infinite velocity components predicted by
lineerized theory correspond to a high negative pressure coefficient
near the edge. By rounding the subsonic leading edge to increase
the projected area on which the lower pressure can act, it is
possible to reduce the total drag of the wing. As the edge radius
is increased, an optimm curvature that corresponds to a maximiza-
tion of the product of area times suction force per umit area,
should be obtained. It has been shown experimentally that round-
ing the leading edge of triangular wings swept beyond the Mach
angle increases the lift-drag ratio, but that continued rounding
beyond a certain value produces no further gains,

APPLICATION OF LEADING-EDGE SUCTION-FORCE EQUATION

For a givem main surface (fig. 1), the optimmm wing is one
whose tip has the greatest lift-drag ratio L/D. If the tip has

] 1
no subsonic edge, this ratio is simply % = 5, ﬁ T, = %E where
1 +E .
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Dw is the wave drag and ZDf the skin-Priction drag. If the tip

has a subsonic leading edge its lift-drag ratio becomes

L L 1 1 (
L _ == —_— 12)
D D +Dp-F a.1+nf

]Jw Dw

wvhere F is the suction force at the subsonic leading edge. The

D D,
W
iPt-drag ratio. If frictionless flow is assumed, the param-
eter F/D, should be maximized.

tip with the minimm value of (—E:E - -E-) therefore has the highest

As an example of the procedure for obtaining wings of optimum

Dp

plen boundaries, the quantity (n_w - ﬁr will be derived for a

wing with a straight-line supersonic leading edge vy = klu. The
quantity V in equation (11) then becomes v - kyup (fig. 4) and
the suction force is

F = _L—/ v-k]_uz) (L- iu-g) %i—g dv (13)

vhere v, 1is the value of v at the extreme tip and u =Iu2(v)
is the equation of the tip edge.

The wave drag for a wing tip of this type is (appendix B)

D, .__';M_‘;iey.z.‘!'a__ f " ﬂ}- + &y é.-z %2-)] l\l(v-kluz) Eb-(v-kluz):l
Ky JEL [

-(v-k.
+ (ky-1)b tan~t _(gkl—iz)—)}av (14)




and the friction drag is

= = 'R'CT) prJa Pv.h -
Dp = c])’f'% oU” X (tip eres) = _:qu@—/ [‘b-(v—kluz)] av (15)
0 ]

»
)
;
f
'.
[«
l.
I
,':
)

o A_._ @ B __

i+ tiis squation for the tralling edge determines the chord of the wing
(fig. 4¢). Then combining equations (15) to (15)

. nv PV~ e
- E%éﬁl tE-(v-kluzﬂdv -kl'\/-fl-;/ t lfv—kluz)é. - %—?—) ,\/%dv

%) p
Y N pe e - :
E+k1 (1-2 %):l N[(v-kyup) [o- (v-kyug)] + (k3-1)b tan™™ b-i—:—;:i_:z) &
o ‘ -
(16)

If the wing-tip equation is kept in the genersl form uz(v) » the conditions for min-

imizing equation (16) can only be indicated, The procedure is to set the differential of
equation Tm) equal to zero; the solution to the resulting integral equation; however; has
not yet been determined.

If the wing is assumed to have a stralght tip edge given by U, = kzv, then the plan
form is a trapezoid and the integrals in eguation (18) can be evaluated (appendix C) to-

— _"
yieLla
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| B
per B L - & (o) R

Dy (3ky, - 2k, - 1) ()

where
-cn<k1<0
O<kz<l
and k, end k, determine the sweep angles of the leading and

trailing edges 91 and 62 s Tespectively. The angles corre-
sponding to several values of the constants are:

ki | 64 ko | 62
0 - 0] B
-1 | n/2 1] 0
= | u

The equations relating the angles and the constants are

(ky - 1)
6, = tan ™t 1
1 Bikl + 1)
(18)
1 (1-x)
% =t TR,
/
As an indication of the variation of leading-edge suction
force for this type of wing, the effect of 6 upon F/D_, as
calculated from equations (17) and (18) with Cpp =0, is shown
in figure 5 for 6, = 65° (k; = -2.75) at M= ,Z. An optimm
value of 6, occurs at about 20°. ’ )

In order to obtain an expreséion for optimm velues of 92
(or k,) as a function of k;, equation (17) must be differ-

entiated and set equal to zero. When differentiated with respect
to kp, the equality ylelds
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ak22k1+k2(3-7k1)+3k1-1+f3?22f£,\/k';=o (19)

Differentiation with respect to kl Yyields no true maximum for the
tyre of wing treated. The variation of the optimum value of ko
with k,, as expressed by equation (19), is shown in figure 6 for

acD £
several values of —_—1,

al

A wing with 6; = 65° and three alternate tip curves A, B,

and C passing through points 0 and t+ 1is shown in figure 7. Tip
curve B 1s swept so that 92 = 20° (the optimm for this trape-

zoidal wing from fig. 5). Curves A and C are arbitrary curves,
symmetrical about B, drawn through O and t.

The following values of F/Dw were obtained i>y numerical

integration of equations (13) and (14) for these tips; the result-
ing effect on lift-drag parameter aI./D for frictionless flow is
also shown:

Wing F oL/D
/e (frictionless
flow)
A 0.39 1.64
B 31 1.45
C «20 1.25

These results indicate that the lift-drag ratio may be increased by
the use of approprietely curved wing boundaries at supersonic
speeds.

As en indication of the magnitudes of F/Dw theoretically
obtainable with other type plan forms, the variation of F/Dw

with apex angle for a trienguler wing is shown in figure 8. This
relation is based on the equatioms in reference 2.

The veriation of maximm lift-drag retio with k; is shown

in figure 9 for trapezoidal tips. These lift-drag ratios were"
calculated from the optimum values of ko, shown in figure 6.
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The lift-drag ratio for the main surface of a trapezoidal wing is
also shown for comparison. These curves- show that the maximm
lift-drag ratio of sweptback trapezoidal wings is obtained, not
when the wing is cut off at the inner Mach line (main-surface
curves), but rather when the optimm tip angle, based on considera-
tion of leading-edge suction, is chosen. (This result held for all

B
values of the friction parameter —cgﬁ shown.) For sweptforward
a
trapezoidal wings, however, figure 9 indicetes that the optimm
1lift-drag ratio L/D 1is obtained when the tip is cut back at the
inner Mach angle.

The lift-drag ratio is shown in figure 10 as & function of
angle of attack for the wing tips previously mentioned, for the
main surface, and for a tip cut off in the flow direction (tip D).
The calculations were made for M = 42 and Cp e = 0.005. This

figure indicates that appropriately curved plan forms glve more
favoreble lift-drag ratios than the optimm trapezoidal wing. TFor
wings of low aspect ratio, the effect of the tip design becomes
relatively more important; a complete study must therefore include
the effect of aspect ratio. From the standpoint of high lift-drag
ratio, a tip such as D (£ig. 10) is poor for any aspect ratio
inasmuch as a higher lift-drag ratip can be obtained merely by
cutting off the wing at the Mach line.

CONCLUSIONS

The following conclusions result from a method for evaluatlion
of the theoretical leading-edge suction force on a type of wing
for which the forward Mach lines from the subsonic leading edge
intersect a supersonic leading edge:

l. The optimum lift-drag ratio of sweptback trapezolidal wings
is obtained when the optimum tip angle, based on consideration of
leading-edge suction, is chosen. For sweptforward trapezoidal
wings, however, the optimum lift-drag ratio is obtained when the
tip is cut back at the Mach angle. The possible gain in lift-drag
retio from proper tip design of trapezoidal wings increases as the
sweepback of the wing is Increased.

2. Higher lift-drag ratios may be obtained with wing tips
whose edges are appropriately curved than may be obtained with
straight-line wing tips.

Lewis Flight Propulsion Iaboratory,
National Advisory Committee for Aeronsautics,
Cleveland, Ohio, July 15, 1948.
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APPENDIX A
g -
8 b PERTURBATION-VELOCITY COMPONENTS
NEAR SUBSONIC LEADING EDGE
' The x-component of the perturbation velocity @, = -gip, where
® is the perturbation-velocity potential, is given in reference 3
as
d.uz)
3P _ Ua dv'-du' U (-a) (1 - &= &
ox NCEWICED] Nua ) v=v")
° 'AB BQ

where the primes denote the variables of integration.

A B /_v=vl(‘.1)

The integrels are evaluated along the supersonic leading edge
from A to B and along the Mach line from B to Q. When point P
approaches the subsonic leading edge 0Q (n—»0), points A and B
' converge and equation (Al) reduces to




-
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- U duy av'
== |1 - 2 A2
Px 2Bx% ( dv) N(u-ut)(v-v') (a2)
n—>0 BQ

which upon integration becomes the first of equations (3). The
expression for cpy is obtained similarly. )

1003
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APPENDIX B

IRAG FORCE

In accordance with -linearized theory, the wave drag of a thin
flat plate is

D, = o = alpgS . (B1)

where the 1ift coefficient can be expressed as

L ff o7 (52)
JJ =

For a wing of the type shown in figure 4, reference 3 shows
that the pressure coefficient can be expressed as

%L

Cy = - 2 @_ - dna) l"'kluz + 1-ky tem~L ky (up-u)
™ WIN R R VT,

A combination of equations (Bl) to (B3) yields

AL ¥-b
40 G R o [k (p-0)
Dw =_a:M—%— dvvl‘ (1- dv)l\l u-u, iJ,'_‘iI ten™, %fi_ﬁz—- au
0 (

v) i
(B4)

which upon integration with respect to u becomes equation {14).

(83)

e e e — -
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APPENDIX C

SUCTION FORCE AND IIRAG FOR A TRAPEZOIDAL WING
The equation of the tip of a trapezoldal wing is

u, (v) = kv (c1)

By the use of this equation, if the value of v, is known, the

wave drag, friction drag, and suction force can be obtalned from
equations (13)-to (15). TFor the trapezoidal wing

o) MaME(ey + 1)E - 4y
" (1'k1"z) T ()

The use of equations (Cl) and (C2) in equations (13) to (15) ylelds

2,2 (ky-1)
F = ":i:zc ](:izkl_’f);z— Edz(kl +1)2 - 41::;] (c3)
o - PP ? [Mz(kl +1)2 - 4k1;| (3ky - 2kykp - 1) ()
8p° (1-kyky) ey [y
- pUzCZCD,f l__ida(kl + 1)2 - Qﬂ_ (05)

8B k(K Kp-1)

By subtracting equation (C3) from (C5) and by dividing the result
by ‘equation (C4), equation (17) is obtained.

,
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Figure 1. = Coordinate system used in analysis of wing tip.
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Supersonic
leading edge

= uz(v)
\(vt’ut)

AR~

Figure 4, - Wing with straight supersonic leading edge and
generallzed subsonic leading edge u2 v).
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Figure 5. = Variatlon of F/Dw for tip of trapezoidal wing with

6, = 65° at X = 42,
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Figure 7. - Wing tips analyzed for wing with ©; = 65° at M = A2.
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(Based on equations from reference 2.)
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